/**************************************************************************** ** ** Copyright (C) 2011 Nokia Corporation and/or its subsidiary(-ies). ** All rights reserved. ** Contact: Nokia Corporation (qt-info@nokia.com) ** ** This file is part of the QtDeclarative module of the Qt Toolkit. ** ** $QT_BEGIN_LICENSE:BSD$ ** You may use this file under the terms of the BSD license as follows: ** ** "Redistribution and use in source and binary forms, with or without ** modification, are permitted provided that the following conditions are ** met: ** * Redistributions of source code must retain the above copyright ** notice, this list of conditions and the following disclaimer. ** * Redistributions in binary form must reproduce the above copyright ** notice, this list of conditions and the following disclaimer in ** the documentation and/or other materials provided with the ** distribution. ** * Neither the name of Nokia Corporation and its Subsidiary(-ies) nor ** the names of its contributors may be used to endorse or promote ** products derived from this software without specific prior written ** permission. ** ** THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ** "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT ** LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR ** A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT ** OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, ** SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT ** LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, ** DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY ** THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT ** (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE ** OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE." ** $QT_END_LICENSE$ ** ****************************************************************************/ #include "voiceanalyzer.h" /** * Constant used to scale the cut-off density for the fft helper. */ const static float CutOffScaler = 0.05; /** * Force the precision to be "1/PrecisionPerNote" notes * near the target frequency. */ const static int PrecisionPerNote = 4; /** * TargetFrequencyParameter is a constant which implies the index at * which corresponds to the target frequency. * 0.5 * N * 1/TargetFrequencyParameter is (about) the index which * corresponds to the given target frequency. * Effectively TargetFrequencyParameter = 2^z, and the z*TargetFrequency * is the maximum frequency that can be noticed. */ const static int TargetFrequencyParameter = 4; VoiceAnalyzer::VoiceAnalyzer(const QAudioFormat &format, QObject *parent): QIODevice(parent), m_format(format), m_frequency(0), m_position(0), m_fftHelper(new FastFourierTransformer(this)) { Q_ASSERT(qFuzzyCompare(M_SAMPLE_COUNT_MULTIPLIER, float(2)/(M_TWELTH_ROOT_OF_2 -1.0))); m_totalSampleCount = qRound(qreal(PrecisionPerNote) *TargetFrequencyParameter *M_SAMPLE_COUNT_MULTIPLIER); m_samples.reserve(m_totalSampleCount); int i = 2; int j = 1; for (; i < TargetFrequencyParameter; i *= 2) { j++; } m_maximumVoiceDifference = j*12; setCutOffPercentage(CutOffScaler); } /** * Opens the parent QIODevice. Sets up the analysation parameters. */ void VoiceAnalyzer::start(qreal frequency) { m_stepSize = (qreal) 1.0 * m_format.sampleRate() / (TargetFrequencyParameter*2*frequency); m_frequency = frequency; open(QIODevice::WriteOnly); } /** * Closes the parent QIODevice, thus the voice is not analysed anymore. * Resets the m_samples QList. */ void VoiceAnalyzer::stop() { m_samples.clear(); m_samples.reserve(m_totalSampleCount); close(); } /** * Called when data is obtained. Stores each m_stepSize sample * into a QList to be analysed. */ qint64 VoiceAnalyzer::writeData(const char *data, qint64 maxlen) { const int channelBytes = m_format.sampleSize() / 8; int sampleSize = m_format.channels() * channelBytes; int m_stepSizeInBytes = m_stepSize*sampleSize; // assert that each sample fits fully into the data Q_ASSERT((m_position % sampleSize)==0); const uchar *ptr = reinterpret_cast<const uchar *>(data); while (m_position < maxlen) { if (m_samples.size() < m_totalSampleCount) { m_samples.append(getValueInt16(ptr+m_position)); } else { analyzeVoice(); m_samples.clear(); m_samples.reserve(m_totalSampleCount); // fast forward position to the first position after maxlen or to the maxlen m_position += ((m_stepSizeInBytes - 1 + maxlen - m_position) / m_stepSizeInBytes) * m_stepSizeInBytes; break; } m_position += m_stepSizeInBytes; } m_position -= maxlen; return maxlen; } /** * Interprets ptr as a pointer to int value and returns it. */ qint16 VoiceAnalyzer::getValueInt16(const uchar *ptr) { qint16 realValue = 0; if (m_format.sampleSize() == 8) { const qint16 value = *reinterpret_cast<const quint8*>(ptr); if (m_format.sampleType() == QAudioFormat::UnSignedInt) { realValue = value - M_MAX_AMPLITUDE_8BIT_SIGNED - 1; } else if (m_format.sampleType() == QAudioFormat::SignedInt) { realValue = value; } } else if (m_format.sampleSize() == 16) { qint16 value = 0; if (m_format.byteOrder() == QAudioFormat::LittleEndian) value = qFromLittleEndian<quint16>(ptr); else value = qFromBigEndian<quint16>(ptr); if (m_format.sampleType() == QAudioFormat::UnSignedInt) { realValue = value - M_MAX_AMPLITUDE_16BIT_SIGNED; } else if (m_format.sampleType() == QAudioFormat::SignedInt) { realValue = value; } } return realValue; } /** * Takes a number between 0 and 1, scales it with CutOffScaler, * multiplies it with maximum density, and then gives it * to the fft helper. */ void VoiceAnalyzer::setCutOffPercentage(qreal cutoff) { cutoff = CutOffScaler*cutoff; if (m_format.sampleSize() == 8) { float t = cutoff*m_totalSampleCount*M_MAX_AMPLITUDE_8BIT_SIGNED; m_fftHelper->setCutOffForDensity(t); } else if (m_format.sampleSize() == 16) { float t = cutoff*m_totalSampleCount*M_MAX_AMPLITUDE_16BIT_SIGNED; m_fftHelper->setCutOffForDensity(t); } } /** * Returns the current target frequency. */ qreal VoiceAnalyzer::frequency() { return m_frequency; } /** * Returns the maximum absolute value sent by * the voiceDifference() signal. */ int VoiceAnalyzer::getMaximumVoiceDifference() { return m_maximumVoiceDifference; } /** * Returns the maximum precision per note * near the target frequency. */ int VoiceAnalyzer::getMaximumPrecisionPerNote() { return PrecisionPerNote; } /** * Analyzes the voice frequency and emits appropriate signals. */ void VoiceAnalyzer::analyzeVoice() { m_fftHelper->calculateFFT(m_samples); int index = m_fftHelper->getMaximumDensityIndex(); // If index == -1 if (index == -1) { // The voice is to be filtered away. // Emit the lowVoice signal and return. emit lowVoice(); qDebug() << "low voice"; return; } // Else, continue // Let the correctIndex to be // the nearest index corresponding to the correct frequency. qreal stepSizeInFrequency = (qreal)m_format.sampleRate() / (m_totalSampleCount * m_stepSize); qreal newFrequency = qreal(index) * stepSizeInFrequency; // Calculate the nearest index corresponding to the correct frequency. int correctIndex = qRound(m_frequency / stepSizeInFrequency); qreal value = 0; // If the obtained frequency is more than // log_2(TargetFrequencyParameter) octaves less than the m_frequency: // Note: // Instead of m_frequency/TargetFrequencyParameter > newFrequency, // the comparison is done without a div instructions by // m_frequency > newFrequency * TargetFrequencyParameter. if (m_frequency > newFrequency * TargetFrequencyParameter) { // Set the difference value to be -m_maximumVoiceDifference. qDebug() << "compare" << "low" << newFrequency << m_frequency - stepSizeInFrequency * correctIndex << (m_frequency - stepSizeInFrequency * correctIndex) / stepSizeInFrequency; value = -m_maximumVoiceDifference; } // Else, if the obtained frequency is more than // log_2(TargetFrequencyParameter) octaves more than the m_frequency: else if (m_frequency*TargetFrequencyParameter < newFrequency) { // Set the difference value to be m_maximumVoiceDifference. qDebug() << "compare" << "high" << newFrequency << m_frequency - stepSizeInFrequency * correctIndex << (m_frequency - stepSizeInFrequency * correctIndex) / stepSizeInFrequency; value = m_maximumVoiceDifference; } // Else: else { // Calculate the difference between the obtained and the correct // frequency in tones. // Use stepSizeInFrequency * correctIndex instead of // m_frequency so that the value is zero when there is correct // voice obtained. Set the difference value to be // log(frequency / target frequency) * 12 / log(2). value = log(newFrequency / (stepSizeInFrequency * correctIndex)) * 12 / M_LN2; qDebug() << "compare" << value << newFrequency << m_frequency - stepSizeInFrequency * correctIndex << (m_frequency - stepSizeInFrequency * correctIndex) / stepSizeInFrequency; } // Emit voiceDifference signal. QVariant valueVar(value); //Has to be QVariant for QML emit voiceDifference(valueVar); // If the correctIndex is index, emit the correctFrequency signal. if (correctIndex == index) { emit(correctFrequency()); } } /** * Empty implementation for readData, since no data is provided * by the VoiceAnalyzer class. */ qint64 VoiceAnalyzer::readData(char *data, qint64 maxlen) { Q_UNUSED(data); Q_UNUSED(maxlen); return 0; }
© 2008-2011 Nokia Corporation and/or its subsidiaries. Nokia, Qt and their respective logos are trademarks of Nokia Corporation in Finland and/or other countries worldwide.
All other trademarks are property of their respective owners. Privacy Policy
Licensees holding valid Qt Commercial licenses may use this document in accordance with the Qt Commercial License Agreement provided with the Software or, alternatively, in accordance with the terms contained in a written agreement between you and Nokia.
Alternatively, this document may be used under the terms of the GNU Free Documentation License version 1.3 as published by the Free Software Foundation.